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/12 /Abstract

/13 /

/14 / The kinetics of the oxygen reduction reaction (ORR) was studied in alkaline electrolyte at 293�/333 K on bare and Pd modified

/15 /Pt(hkl ) and Au(hkl ) surfaces. The rotating ring-disk electrode technique was used to study the ORR with solution phase peroxide

/16 /detected at the ring electrode. Pd modification was either by electrodeposition (Pt) or by vapor deposition in vacuum (Au). The

/17 /surface concentration of Pd was determined in vacuum using low energy ion scattering. In agreement to the structure sensitivity

/18 /found at room temperature previously, on the bare Au(hkl ) surfaces the ORR was found to be strongly structure sensitive in the

/19 /temperature range from 293 to 333 K, with order of activity being (100)�/(110)�/(111). The structure sensitivity for Pt(hkl ) is much

/20 /less and varies in the nearly the opposite order (111)�/(100)�/(110). The peroxide intermediate pathway is clearly operative on

/21 /Au(hkl ) surfaces. At elevated temperature, significantly smaller amounts of peroxide are formed. The kinetics of the ORR were

/22 /significantly enhanced by modification of both Pt(hkl ) and Au(hkl ) surfaces with Pd. The catalytic effect is most pronounced on the

/23 /surfaces that are less active surfaces in the unmodified state, with enhancement at least an order of magnitude faster kinetics. Pd

/24 /modification of the Au(hkl ) surfaces, therefore, significantly reduces the structure sensitivity of the ORR. Even on the highly active

/25 /Pt(111) surface the kinetics can be improved by a factor of approximately two to four due to Pd modification. The catalytic

/26 /enhancement can be achieved with as little as 18 at.% Pd in the Au(hkl ) surface. # 2002 Published by Elsevier Science Ltd.

/27 /Keywords: Oxygen reduction reaction (ORR); Surface concentration; Catalytic effect

/28 /1. Introduction

/29 / Oxygen electrochemistry is a highly interesting field in

/30 /electrocatalysis due to its high importance in electrolysis

/31 /and especially in electrochemical energy conversion

/32 /technology (e.g. in fuel cells and batteries [1]). The

/33 /strong R&D effort in fuel cell technology especially in

/34 /the last decade or so has triggered numerous studies on

/35 /the oxygen reduction reaction (ORR) on various

/36 /materials, ranging from noble metals over transition

/37 /metal oxides to organic macrocycles. For an overview

/38 /we refer to several reviews: Tarasevich et al. [2] (mainly

/39 /Pt, Au, and carbon), Kinoshita [1] (general overview on

/40 /oxygen electrochemistry), Adzic [3] (mainly single crys-

/41 /tal Pt and Au, organic macrocycles,) and from our

/ 42/laboratory [4,5] (Pt single crystals and Pt-bimetallic

/ 43/surfaces), respectively. However, most of the funda-

/ 44/mental studies of the ORR have been conducted in

/ 45/acidic electrolyte [3�/5] and primarily on Pt. ORR

/ 46/studies on single crystal electrodes in alkaline solution

/ 47/are less numerous and the individual papers must be

/ 48/consulted for results [6�/12].

/ 49/ In this paper, we report temperature-dependent ORR

/ 50/kinetics on two types of well-defined single crystal

/ 51/electrodes in alkaline electrolyte: (i) pure Pt(hkl ) and

/ 52/Au(hkl ) surfaces and (ii) Pt(hkl ) and Au(hkl ) surfaces

/ 53/modified by Pd. Temperature-dependent base voltam-

/ 54/metry is used to study surface processes on the pure

/ 55/noble metal electrodes. Furthermore, temperature ef-

/ 56/fects on the ORR kinetics on Pt(hkl ) and Au(hkl) are

/ 57/investigated by making use of the rotating ring�/disk

/ 58/electrode technique which allows the quantitative se-

/ 59/paration of the two reaction products, viz., OH� and

/ 60/HO2
�. Subsequently, new kinetic results on the ORR on

/ 61/Pd modified Pt and Au single crystals are presented. The
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/62 /exceptionally enhanced ORR kinetics on the Pd mod-

/63 /ified versus the unmodified surfaces presage a new era of

/64 /advances in ORR electrocatalysis. The discussion sec-

/65 /tion, finally, is devoted to a general comparison of the
/66 /behavior of Pt-based and Au-based single crystal

/67 /electrodes, i.e. in order to highlight the major similarities

/68 /and differences on the pure metals with respect to

/69 /oxygen electrocatalysis and the remarkable promotion

/70 /of the activity of Au(hkl ) surfaces by submonolayer

/71 /amounts of Pd.

/72 /2. Experimental

/73 /2.1. Pt(hkl) and Au(hkl)

/74 / The pretreatment and assembly of the Pt(hkl) single

/75 /crystals (0.283 cm2) in a RRDE configuration was fully

/76 /described previously [13]. In short, following flame

/77 /annealing in a hydrogen flame and cooling in a stream

/78 /of Ar, the single crystal was mounted into the disk
/79 /position of an insertable ring disk electrode assembly

/80 /(Pine Instruments). The gold single crystals (0.283

/81 /cm�2) were flame annealed in a propane flame and

/82 /cooled down in an Ar atmosphere before they were

/83 /mounted in the RRDE setup. Subsequently, the electro-

/84 /des were transferred into a thermostated standard three

/85 /compartment electrochemical cell and immersed into the

/86 /Ar-purged electrolyte (Ar: Bay Gas Research Purity; 0.1
/87 /M KOH: Aldrich Semiconductor Grade prepared with

/88 /triply pyrodistilled water) under potentiostatic control

/89 /at :/0.1 V. A circulating constant temperature bath

/90 /(Fischer Isotemp Circulator) maintained the tempera-

/91 /ture of the electrolyte within 9/0.5 K. All measurements

/92 /were conducted nonisothermally, i.e. keeping the tem-

/93 /perature of the reference electrode constant (:/298 K)

/94 /while that of the working electrode was varied between
/95 /293 and 333 K. The reference electrode was a saturated

/96 /calomel electrode (SCE) separated by a closed electro-

/97 /lyte bridge from the working electrode compartment in

/98 /order to avoid chloride contamination. All potentials,

/99 /however, refer to that of the reversible hydrogen

/100 /electrode in the same electrolyte. The collection effi-

/101 /ciency of the RRDE setup was N�/0.229/5%. The

/102 /measurements on Pt(110) were carried out on the
/103 /reconstructed surface with (1�/2) geometry, prepared

/104 /according to ref. [14], hereafter this surfaces is denoted

/105 /Pt(110) only. The reconstructed (1�/2) surface was

/106 /previously found to be stable in the potential range

/107 /applied in the present study [14].

/108 /2.2. Pt(hkl)�/Pd and Au((hkl)�/Pd

/109 / Palladium films were deposited on Pt(hkl ) via con-

/110 /tinuous potential cycling from a approximately 10�5 M

/111 /Pd2� solution in 0.05 M sulfuric acid at 50 mV s�. The

/ 112/amount deposited was controlled by the continuous

/ 113/change of the voltammetric features from those char-

/ 114/acteristic of Pt(111) to those of a pseudomorphic

/ 115/monolayer of palladium [15,16]. After completion of a
/ 116/monolayer of palladium, the electrode was rinsed with

/ 117/water and transferred to a second electrochemical cell

/ 118/containing a solution (0.1 M KOH) free of Pd2� ions

/ 119/(and emmersed at 0.1 V) where the ORR measurements

/ 120/were performed. Solutions were prepared from sulfuric

/ 121/acid (Baker Ultrex) and PdO (Alfa Products) employing

/ 122/pyrolytically triply distilled water.

/ 123/ The Au(hkl )�/Pd electrodes were prepared and char-
/ 124/acterized in a UHV system under a base pressure of 2�/

/ 125/10�10 Torr, equipped with an angular-resolving double

/ 126/pass cylindrical mirror analyzer (PHI-DPCMA F15-

/ 127/255GAR) with an electron source at its center axis.

/ 128/After several Ar�-sputtering/annealing cycles, the clean-

/ 129/liness of the surfaces were checked by Auger electron

/ 130/spectroscopy (AES, 3 keV). AES spectra were recorded

/ 131/in derivative mode in the range from 140 to 600 eV using
/ 132/3 keV electron beam energy, 3 eVp�p modulation and �/

/ 133/5 mA beam current. Subsequently, the crystal was cooled

/ 134/to liquid nitrogen temperature (77 K) and the surface

/ 135/was modified by vapor deposition of Pd. Different

/ 136/amounts of palladium were deposited onto the clean

/ 137/Au(hkl ) surfaces using a UHV evaporator (Omicron/

/ 138/Focus, model EFM3/4), equipped with an integrated

/ 139/flux monitor. The deposition of Pd was followed by
/ 140/simultaneously recording the AES signal for Pd at 330

/ 141/eV in a range of 9/10 eV. After deposition the total

/ 142/coverage of Pd was determined by low energy ion

/ 143/scattering (LEIS). LEIS spectra were taken with a

/ 144/He� beam energy of 1 keV with sample current from

/ 145/5 to 30 nA at residual He pressure of 2.5�/10�8 Torr.

/ 146/Scattering and incidence angle were 127 and 458,
/ 147/respectively. A F04-303A differentially pumped ion
/ 148/gun was used to raster the He� ion beam over

/ 149/approximately 3�/3 mm area. Time of recording was

/ 150/60 s per spectrum. After Pd deposition, the crystal was

/ 151/allowed to thermally equilibrate with room temperature

/ 152/(ca. 5�/6 h) and the surface composition was checked

/ 153/several times. Once the surface composition of the

/ 154/Au(hkl )�/Pd surface alloy electrodes was found to be

/ 155/stable, normally after approximately 24 h, the crystals
/ 156/were transferred into the electrochemical cell containing

/ 157/0.1 M KOH electrolyte under potential control.

/ 158/3. Results

/ 159/3.1. Base voltammetry of Pt(hkl) at different

/ 160/temperatures

/ 161/ In order to describe the basic principles and surface

/ 162/processes of the temperature dependent basic voltam-

/ 163/metry on Pt(hkl ) in 0.1 M KOH in the temperature
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/164 /range between 275 and 333 K, the base voltammetry of

/165 /Pt(111) in 0.1 M KOH at 275 and 333 K is summarized

/166 /in Fig. 1a. Since the interpretation of the temperature

/167 /dependent base CV’s of Pt(hkl) in alkaline electrolyte
/168 /has been described in recent work [12,17], we only

/169 /briefly review that interpretation here. Pt(111) (Fig. 1a)

/170 /is the only surface of the low-index single crystals which

/171 /exhibits three separate potential regions: The hydrogen

/172 /underpotential deposition region (Hupd, 0B/E B/0.4 V)

/173 /is directly followed by the double layer region (ca. 0.4

/174 /VB/E B/0.6 V) and then the so-called ‘butterfly region’

/175 /(0.6B/E B/0.9 V), which is commonly assumed to

/176 /represent the discharge of OH� to form OHad [18]. In

/177 /contrast to this highly reversible state of adsorbed
/178 /hydroxyl, a more irreversible ‘oxide’ state is formed at

/179 /potentials above 0.9 V. It is noteworthy, however, that

/180 /the chemical state of this irreversible form of oxide is not

/181 /exactly known. As already mentioned in our detailed

/182 /study on temperature effects on the base CV of Pt(111)

/183 /in acid and alkaline electrolyte [12], the oxide peak at

/184 /approximately 1.1 V (276 K) is shifting to more negative

/185 /potentials with increasing temperature. Additionally,

/186 /the concomitant oxide reduction peak in the cathodic

/187 /sweep direction is shifting to more positive potentials at

/188 /higher temperatures, Fig. 1a. This implies that this
/189 /oxidation process is becoming more reversible with

/190 /increasing temperature. Although slight potential

/191 /changes of the peak position of the butterfly feature

/192 /are observed by increasing temperature, the formation

/ 193/of the reversible form of OHad is not affected signifi-

/ 194/cantly by temperature changes [12,17]. Similar as the

/ 195/reversible formation of OHad in the butterfly feature,

/ 196/also the Hupd region is only slightly affected by
/ 197/temperature changes. Most obviously, the adsorption

/ 198/of Hupd is shifted to more negative potentials at higher

/ 199/temperature. Additionally, based on the charges alone,

/ 200/we found a slightly lower Hupd coverage at 333 K than

/ 201/on 275 K. Details about the thermodynamics and

/ 202/energetics of Hupd and OHad on Pt(111) in alkaline

/ 203/solution can be found in ref. [19]. In contrast to Pt(111),

/ 204/which represents the only surface with ‘clearly’ sepa-

/ 205/rated potential regions for Hupd and OHad adsorption, a

/ 206/double-layer region does not exist on neither Pt(100) nor
/ 207/(100) and the Hupd region is overlapping with the OHad

/ 208/formation region [17]. On both surfaces the reversible

/ 209/formation of OHad is observed up to approximately 0.7

/ 210/V, followed by a more irreversible formation of oxyge-

/ 211/nated species. Also on Pt(100) and Pt(110), the same two

/ 212/effects on Hupd and OHad is observed, i.e. the negative

/ 213/shift of the Hupd region and the increasing reversibility

/ 214/of the second (irreversible) oxide state. Most impor-

/ 215/tantly, however, we recently demonstrated by titrating

/ 216/Pt(hkl ) surfaces with the continuous oxidation of CO

/ 217/that some OHad must be co-adsorbed with Hupd even at
/ 218/potentials below approximately 0.1 V on all three low-

/ 219/index surfaces, since even at these low potentials

/ 220/significant CO oxidation currents could be observed.

/ 221/Additionally, it could be shown that the tendency to
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Fig. 1. (a) Base voltammetry (50 mV s�1) of Pt(111) at 276 K (solid line) and 333 K (dashed line) in 0.1 M KOH. (b) ORR polarization curves (50

mV s�1, 1600 rpm)) on Pt(111) at 293 K (dashed line) and 333 K (solid line). (c) Ring currents for the detection of peroxide formed during the ORR

on Pt(111) at 293 K (dashed line) and 333 K (solid line). (d) Tafel plots for the ORR on Pt(111) at 293 K (white triangles), 313 K (gray squares) and

333 K (gray circles) deduced from the polarization curves at 1600 rpm.
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/222 /become (irreversibly) oxidized, especially at elevated

/223 /temperatures, increased in the sequence Pt(111)B/

/224 /Pt(100)B/Pt(110) [17,20].

/225 /3.2. Oxygen reduction on Pt(hkl) in KOH

/226 / Before describing the polarization curves for the ORR

/227 /in detail, a short review on the oxygen reduction

/228 /reaction and the relation to RRDE measurements is

/229 /given. It is well known that the ORR follows a complex

/230 /reaction mechanism. Out of several propositions (for an

/231 /overview we refer to ref. [1�/3]), one suitable ORR

/232 /reaction scheme [5], which is based on the schemes
/233 /proposed by Bagotsky et al. [21] and Wroblowa et al.

/234 /[22], is illustrated here.

/235 / Briefly summarized, adsorbed O2 on the disk elec-

/236 /trode can react either directly to OH� (k1-path, 4-e�

/237 /reduction) or follows a serial pathway through the

/238 /intermediate formation of adsorbed HO2
� (k2-path),

/239 /which, in a second step, can be further reduced to OH�

/240 /(k3, 2�/2-e� reduction). Produced HO2,ad
� molecules can

/241 /also desorb from the disk electrode to the solution phase

/242 /(k5-path). Additionally, HO2,ad
� can be chemically de-

/243 /composed to form water and O2 in a heterogeneously

/244 /catalyzed reaction step (k4-path).Without discussing this

/245 /issue here, based on our previous observations [4,5] it

/246 /seems that the ORR on Pt always follows the serial

/247 /reaction pathway through the formation of HO2,ad
� (k1 is

/248 /negligible), but without producing any detectable
/249 /amounts of HO2

� in solution, i.e. k3�/k5. In ring�/disk

/250 /measurements, the solution phase intermediate HO2
�

/251 /desorbing from the electrode surface can be detected on

/252 /the independently polarized Pt ring (Ering�/1.2 V vs.

/253 /RHE) electrode by oxidizing it back to O2.

/254 / The polarization curves for the ORR on Pt(111) at

/255 /293 and 333 K (1600 rpm, 50 mV s�1) are illustrated in

/256 /Fig. 1b. In short, the region of mixed kinetic-diffusion
/257 /control (0.8 VB/E B/1 V) is followed by the diffusion

/258 /limited current densities below approximately 0.8 V. At

/259 /E B/0.4 V, i.e. in the Hupd region, a deviation of the

/260 /diffusion limited currents to lower values can be

/261 /observed. This deviation can be quantitatively related

/262 /to the formation of HO2
� as demonstrated by the HO2

�

/263 /detection on the ring electrode [4,11], see Fig. 1c. A more

/264 /detailed discussion of the ORR in the Hupd region on
/265 /Pt(hkl ) can be found in our previous papers [4,11]. At

/266 /lower overpotentials, i.e. in the mixed kinetic-diffusion

/267 /region, no peroxide can be observed. A comparison of

/268 /the ORR polarization curves at 293 and 333 K indicates

/269 /that as expected considerably higher reaction rates are

/270 /observed at 333 K, pointing to the fact that the ORR in

/271 /KOH is a significantly activated process. The apparent

/272 /activation energy, DH", is 47 kJ mol�1 determined at
/273 /constant overpotential, h�/0.35 V in an Arrhenius

/274 /analysis (values summarized in Table 1) according to a

/275 /procedure described previously [23,24]. A similar value

/ 276/was previously found in 0.05 M H2SO4 extrapolated to

/ 277/the reversible potential [25]. The logi/E-relationships

/ 278/(so-called Tafel plots) at 293, 313 and 333 K are plotted

/ 279/in Fig. 1d. The logi/E-relationships at the different
/ 280/temperatures were fitted by straight lines in order to

/ 281/determine the Tafel slopes. Decreasing Tafel slopes from

/ 282/approximately 86 to 57 mV per decomposition were

/ 283/found when going from 293 to 333 K, as summarized in

/ 284/Table 1. In contrast to Pt(hkl ) in acid solution, the Tafel

/ 285/slopes are not proportional to RT/F. Fig. 2 illustrates

/ 286/the Tafel plots and the ring currents for HO2
� formed

/ 287/during the ORR on Pt(100) and Pt(110), respectively. In
/ 288/contrast to Pt(111), some HO2

� is detected in the

/ 289/potential region above 0.4 V, and there is generally a

/ 290/decrease of peroxide formation by increasing tempera-

/ 291/ture, an increase in activity by increasing temperatures,

/ 292/and again decreasing Tafel slopes when going from 293

/ 293/to 333 K. It is noteworthy, that on Pt(100) and Pt(110)

/ 294/similar apparent activation energy of approximately 42

/ 295/and 37 kJ mol�1, respectively, than on Pt(111) can be
/ 296/found. Based on the polarization curves and the Tafel

/ 297/plots at the different temperatures, the ORR activity

/ 298/increases in the order P(110)(1�/2)B/Pt(100)B/Pt(111).

/ 299/However, in a previous study in KOH at room

/ 300/temperature in the same laboratory [11] a slightly

/ 301/different order was found, namely Pt(111)�/Pt(110)�/

/ 302/Pt(100). The discrepancy can be explained by the

/ 303/differences in preparation and in surface structure of
/ 304/the Pt(110) crystal. In the present study, we carefully

/ 305/prepared the reconstructed Pt(110)(1�/2) surface, ver-

/ 306/sus the unreconstructed (1�/1) surface used in the

/ 307/previous study [11]. Therefore, the lower activity in the

/ 308/present case can be ascribed to the fact that the very

/ 309/‘open’ Pt(110)(1�/2) surface adsorbs OH more strongly

/ 310/than (1�/1) surface in the previous study, i.e. the

/ 311/adsorption sites for molecular oxygen are significantly
/ 312/blocked by adsorbed OH (see Section 4 below).

313

/ 314/3.3. ORR on Pd modified Pt(hkl)

/ 315/ We had reported previously the kinetics of the ORR

/ 316/on Pt(111) in acid solution [15], and the effect of

/ 317/modification by one pseudomorphic Pd monolayer.

/ 318/The in situ structure of this monolayer was determined

/ 319/by surface X-ray scattering [16]. The ORR polarization
/ 320/curve in 0.1 M KOH for Pt(111)-1 ML Pd along with

/ 321/the polarization curve of Pt(111) is shown in Fig. 3a as

/ 322/an example. Quite obviously, the Pd modified Pt(111) is
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/323 /much more active for the ORR as compared with the

/324 /unmodified Pt(111) surface. Additionally, at potentials

/325 /below 0.4 V, smaller amounts of peroxide is formed on

/326 /the Pt(111)�/1 ML Pd (Fig. 3b). A comparison of Tafel

/327 /plots of the modified versus the unmodified surface is

/328 /illustrated in Fig. 3c. By comparing the kinetic current

/329 /densities at 0.9 V, an activity improvement of a factor of

/330 /approximately 4 can be observed. It is noteworthy that

/331 /in perchloric acid solution Pd modified Pt is less active

/332 /for the ORR [15].

/ 333/3.4. Base voltammetry of Au(hkl) at different

/ 334/temperatures

/ 335/ The base voltammetry of Au(111), Au(100), and

/ 336/Au(110) in a temperature range between 293 and 333

/ 337/K, is shown Fig. 4. This figure records the second sweep

/ 338/after potential excursion into the oxide region. The

/ 339/voltammetry at 293 K presented in Fig. 4 is character-

/ 340/istic for Au(hkl ) reported previously in the literature

/ 341/(e.g. see ref. [7,8,26,27]). Similar to Pt(hkl ), the base

/ 342/voltammetry of Au(hkl ) is also characterized by three

/ 343/potential regions: (i) the ‘double-layer region’ at E B/

/ 344/approximately 0.6�/0.7 V is followed by (ii) a region of

/ 345/formation of OHad up to approximately 1.1 V and (iii)

c:/3b2/3B2_Batch_Print/in/EA4971.3d[x] Friday, 28th June 2002 9:42:18

Table 1

Summary of the Tafel slopes (Pt(hkl ) and Au(hkl ) and the apparent energies of activation (Pt(hkl ) in 0.1 M KOH

293 K (mV per decomposition) lcd/

hcd a

313 K (mV per decomposition) lcd/

hcd a

333 K (mV per decomposition) lcd/

hcd a

DH" (kJ

mol�1) b

Pt(111) �//86 �//72 �//57 47

Pt(100) �//112 �//78 �//60 42

Pt(110)(1�2) 92/190 80/120 �//83 37

Au(111) 60/185 72/150

Au(100) 47/119 50/85

Au(110) 44/127 37/86

a Tafel slopes determined at low (lcd) and high (hcd) current densities.
b Determined at h�0.35 V.

Fig. 2. (a) Tafel plots for the ORR on Pt(100) at 293 K (white triangles), 313 K (gray squares) and 333 K (gray circles) deduced from the polarization

curves at 1600 rpm. (b) Ring currents for the detection of peroxide formed during the ORR on Pt(100) at 293 K (white triangles), 313 K (gray

squares) and 333 K (gray circles). (c) Tafel plots for the ORR on Pt(110)(1�/2) at 293 K (white triangles), 313 K (gray squares) and 333 K (gray

circles) deduced from the polarization curves at 1600 rpm. (d) Ring currents for the detection of peroxide formed during the ORR on Pt(110)(1�/2)

at 293 K (white triangles), 313 K (gray squares) and 333 K (gray circles).
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/347 /adsorbed OHad is a precursor state for the formation of

/348 /the surface oxide layer which starts at E �/1.1 V. A close

/349 /comparison of the base voltammetry at 333 versus 293 K

/350 /identifies systematic differences: (i) the adsorption of

/351 /OHad is shifted to lower potentials by increasing

/352 /temperature, i.e. the peak position for OHad adsorption

/353 /is shifted by approximately 25�/30 mV on Au(111) and

/354 /Au(100), and approximately 80 mV on Au(110); (ii) the

/355 /peak for oxide formation is shifted to more negative

/356 /potentials concomitant with a shift of the oxide reduc-

/357 /tion peak in the cathodic sweep to more positive

/358 /potentials by increasing temperature. That means for-

/359 /mation/reduction of the surface oxide layer is becoming

/360 /a more reversible process. It is noteworthy that the same

/361 /trends can be observed on Pt(hkl ) electrodes, see

/362 /previous section and ref. [17].

/363 / Fig. 5 highlights the first sweep after emersion at

/364 /approximately0.1 V of the flame annealed Au(100)

/365 /crystal at 293 and 333 K, respectively. Directly after

/366 /flame annealing, the Au(100) surface is hexagonally

/367 /reconstructed forming a (5�/27) unit cell [28]. Coming

/368 /from the negative emersion potential, upon sweeping

/369 /through the OHad region, this so-called (hex) recon-

/ 370/struction is lifted due to adsorption of hydroxyl species,

/ 371/i.e. positive of the peak at approximately 1.025 V at 293

/ 372/K the Au surface has the unreconstructed (1�/1)

/ 373/surface. At 333 K, due to the adsorption of OHad

/ 374/species at more negative potentials, the lifting of the

/ 375/reconstruction is also shifted to more negative poten-

/ 376/tials. The hex reconstruction reforms, albeit slowly,
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Fig. 3. (a) ORR polarization curves (50 mV s�1, 1600 rpm) at 293 K on Pt(111) (dashed line) and Pt(111)-1 ML Pd (solid line) in 0.1 M KOH. (b)

Ring currents for detection of peroxide species formed during the ORR (Ering�/1.2 V). (c) Tafel plots for the ORR on Pt(111) (white squares),

Pt(111)�/1 ML Pd (gray triangles) in 0.1 M.

Fig. 4. Base voltammetry at 293 K (solid line) and 333 K (dashed line) on (a) Au(111), (b) Au(100) and (c) Au(110); 0.1 M KOH, 50 mV s�1.

Fig. 5. Magnification of the first voltammetric sweep after emersion at

ca. 0.1 V on Au(100) at 293 (solid line) and 333 K (dashed line); 0.1 M

KOH, 50 mV s�1.
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/377 /upon holding the potential B/approximately 0.4 V [27].

/378 /There is a similar lifting of the reconstructed surfaces of

/379 /Au(111) and (110), formed during flame annealing,

/380 /when the potential is scanned above approximately 1.1
/381 /V.

/382 /3.5. Oxygen reduction on Au(hkl) in KOH

/383 / Fig. 6 summarizes the representative ORR polariza-

/384 /tion curves on Au(hkl ) at 293 and 333 K (50 mV s�1,

/385 /2500 rpm, lower panels in Fig. 6) along with the

/386 /corresponding ring currents for the oxidation of perox-

/387 /ide formed during the ORR (upper panels). The
/388 /polarization curves on Au(hkl ) at 293 K are in agree-

/389 /ment with previous results reported in the literature,

/390 /whereas, to our knowledge, it is the first time that ORR

/391 /polarization curves on Au(hkl ) at elevated temperature

/392 /are reported. The shape of the i-E -curves on Au(hkl ) are

/393 /qualitatively similar to those described above for

/394 /Pt(hkl ). That is, the region of mixed kinetic-diffusion

/395 /control (ca. 0.7B/E B/1 V) is followed at lower poten-
/396 /tials by a region where the reaction is mainly under

/397 /mass-transport control. However, in the region of

/398 /diffusion limited current densities, no clear current

/399 /plateaus for a 4-e� process are observed as it is the

/400 /case on Pt(hkl). Deviations from the diffusion limited

/401 /current for the 4-e� reduction to OH� can be quanti-

/402 /tatively related to the formation of peroxide species, as

/403 /indicated by the ring currents in the upper panels. As in
/404 /the case of Pt(hkl ), less peroxide is formed by increasing

/405 /the temperature to 333 K. It is clear that the ORR on

/406 /Au(hkl ) is a strongly structural sensitive process in the

/407 /temperature range between 293 and 333 K, with the

/408 /kinetics increasing in the order Au(111)B/Au(110)�/

/409 /Au(100). The Tafel slopes of the ORR on Au(hkl ) at

/410 /the different temperatures are summarized in Table 1.

/411 /The values at room temperature are consistent with

/ 412/previously published Tafel slopes [6�/8] with only the

/ 413/value for Au(111) deviating slightly. This discrepancy

/ 414/may be attributed to some arbitrariness in drawing the

/ 415/tangent through the data points that appear to be a

/ 416/straight line. Nevertheless, as on Pt(hkl), we observe

/ 417/decreasing Tafel slopes with increasing temperature, a

/ 418/fact we will focus on in the Section 4. At low current

/ 419/densities the Tafel slopes were found to deviate slightly

/ 420/form 60 mV per decomposition to lower values, which

/ 421/may arise from a contribution of the back reaction of

/ 422/the process, i.e. peroxide oxidation, which is decreasing

/ 423/the net current for the whole process [7].

/ 424/ Although well known in the literature [6,10,29], we

/ 425/want to emphasize the exceptional behavior of Au(100),

/ 426/Fig. 6c, towards the ORR. Coming from the positive

/ 427/potential limit, oxygen reduction occurs in essentially a

/ 428/4-e� process to form OH�. At potentials negative of

/ 429/the so-called catalytic peak, a transition to an almost 2-

/ 430/e� process is observed, see the polarization at 293 K in

/ 431/Fig. 6c. Interestingly, at 333 K the reaction takes place

/ 432/in a 4-e� process in a much wider potential range and

/ 433/only below approximately 0.45 V are significant

/ 434/amounts of peroxide formed.

/ 435/ In order to get further insight into the reaction

/ 436/intermediate, i.e. solution phase HO2
�, Fig. 7 illustrates

/ 437/the temperature-dependent ORR on Au(100), Fig. 7a,

/ 438/the corresponding ring currents for the oxidation of

/ 439/intermediate peroxide species, Fig. 7b, and, finally the

/ 440/oxidation/reduction of approximately 0.1 M KOH�/

/ 441/2�/10�3 M HO2
� (Fig. 7c). The result in Fig. 7a and

/ 442/c are similar to those reported previously by Adzic and

/ 443/co-workers [7,8]. This figure clearly demonstrates, that

/ 444/the ORR closely follows the reduction of HO2
�. The

/ 445/activity of Au(100) for HO2
� reduction peaks at

/ 446/approximately 0.2�/0.8 V and above this potential only

/ 447/negligible amounts of peroxide are detected on the ring

/ 448/electrode in ORR. Below approximately 0.6 V, the
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Fig. 6. ORR polarization curves (lower panel) along with the ring currents for peroxide detection (upper panel) at 293 K (dashed lines) and 333 K

(solid lines) on (a) Au(111), (b) Au(110) and (c) Au(100); 0.1 M KOH, 50 mV s�1, 2500 rpm.
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/449 /activity for HO2
� decreases, and in the ORR there is a

/450 /corresponding increase in HO2
� production and reduc-

/451 /tion in the diffusion-limiting current. This behavior

/452 /clearly points to a serial ORR mechanism through the

/453 /formation of solution phase HO2
� (2�/2-e� reaction, k2,

/454 /k3 pathway in the reaction scheme). As one can see from

/455 /the polarization curves in Fig. 6, the temperature
/456 /dependence in the kinetically controlled potential re-

/457 /gions, i.e. E �/0.8 V, is relatively slight, much less than

/458 /on Pt(hkl ). In this narrow temperature range of 293�/333

/459 /K, it was difficult to obtain an accurate measure of the

/460 /activation energy and thus no activation energies are

/461 /reported for Au(hkl ). At potentials below 0.8 V, kinetics

/462 /of HO2
� reduction are significantly increased, nearly

/463 /eliminating the catalytic peak at approximately 0.7 V
/464 /and producing 2�/2-e� reduction to much lower

/465 /potentials.

/466 /3.6. ORR on Pd modified Au(hkl)

/467 / Under our experimental conditions, we never were

/468 /able to form a pseudomorphic Pd monolayer on the

/469 /Au(100) or Au(111) surface as reported for electroche-

/470 /mical Pd deposition on Au [30�/33]. Even at liquid
/471 /nitrogen temperature (77 K) Pd was always found to

/472 /spontaneously diffuse into the Au lattice, i.e. to form a

/473 /surface alloy. This effect was most pronounced on the

/ 474/‘open’ Au(100) than on the closed packed Au(111)

/ 475/surface, respectively, as verified by LEIS. During

/ 476/thermal equilibration from approximately 77 K to

/ 477/room temperature, Au(hkl )�/Pd surface alloys were

/ 478/formed, a phenomenon already described in ref. [34].

/ 479/More complete results will be published elsewhere. Fig.

/ 480/8 shows the He� LEIS spectrum of a Au(100)�/Pd

/ 481/crystal after thermal equilibration at room temperature.

/ 482/Nominally 4 ML of Pd were evaporated at approxi-

/ 483/mately 77 K. From the LEIS peak intensities, a Pd

/ 484/surface concentration, xPd,s, of approximately 0.35 (35

/ 485/at.%) can be determined. The AES spectrum of the same

/ 486/electrode clearly shows the presence of Pd in the surface

/ 487/as well as the absence of carbon species, pointing to the

/ 488/cleanliness of the sample surface before and after the Pd

/ 489/deposition.
/ 490/ The Pd-modified Au(hkl ) electrodes were subse-

/ 491/quently transferred to the electrochemical cell contain-

/ 492/ing 0.1 M KOH and ORR measurements were

/ 493/performed. Fig. 9 illustrates representative ORR polar-

/ 494/ization curves along with the ring currents for peroxide

/ 495/detection obtained on pure Au(100) and Au(111) (solid

/ 496/lines) and on Au(100)�/Pd and Au(111)�/Pd with differ-

/ 497/ent Pd surface concentrations (broken lines), respec-

/ 498/tively. By comparing the ORR polarization curves on

/ 499/pure Au(100) and Au(111) with the i-E -curves on the

/ 500/surfaces with xPd,s,Au(100)�/0.17 and xPd,s,Au(111)�/0.18,

/ 501/two striking observations can be made: (i) the onset of
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Fig. 7. (a) ORR polarization curves on Au(100), (b) ring currents for

the detection of peroxide and (c) oxidation and reduction of ca. 2�/

10�3 M HO2
� on Au(100) at 293 K (solid line), 313 K (dashed�/dotted

line) and 333 K (dashed line), respectively; 0.1 M KOH, 50 mV s�1,

2500 rpm.

Fig. 8. (a) Auger electron spectrum (3 keV) of UHV prepared Au(100)

(gray line) and Au(100) modified with Pd equivalent to 4 ML (black

line). (b) LEIS spectrum of the Au(100) modified with Pd equivalent to

4 ML (He�, IE�/5�/10�2 mA, 1 keV), resulting in ca. 35% Pd in the

surface.
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/502 /oxygen reduction is shifted to more positive potentials,

/503 /i.e. the Pd-modified surface is more active than the

/504 /unmodified surface, and (ii) the formation of HO2
� is

/505 /significantly reduced on the Pd-containing Au(hkl )

/506 /surfaces. Both effects are most pronounced on

/507 /Au(111)�/18% Pd, where not only a catalytic shift at

/508 /the ORR onset of approximately 120 mV versus pure

/509 /Au(111) is observed, but also a transition of the reaction
/510 /from an almost pure 2-e� process (HO2

� formation) to

/511 /an almost 4-e� process (OH� formation) on the Pd-

/512 /modified surface is observed. Increasing the Pd surface

/513 /concentrations to xPd,s,Au(100)�/0.35 and xPd,s,Au(111)�/

/514 /0.42 still improves the electrocatalytic properties of the

/515 /Au(hkl )�/Pd surfaces with an increase in activity com-

/516 /bined with a shift to almost 100% selectivity towards the

/517 /formation of OH�.

/518 /4. Discussion

/519 /4.1. ORR on Pt(hkl) and Au(hkl)

/520 / We will discuss the results on Pt(hkl ) and Au(hkl ) in

/521 /terms of the elementary steps derived from the general-

/522 /ized reaction scheme for oxygen reduction in alkaline

/523 /solution given in the previous section:

524 O2 0 (O2)ad (1)

525 (O2)ad�1e� 0 (O�
2 )ad (1a)

526 (O2)ad�H2O 0 (HO�
2 )ad�OHad (1b)

527 (HO�
2 )ad�HO�

2 (2)

528 (HO�
2 )ad�Oad�OHad (3a)

529 Oad�H2O�1e� 0 OHad�2OH� (3b)

530OHad�1e��OH�(x2) (4)

For Pt surfaces, steps Eqs. (1a) and (1b) are generally

/ 531/considered to be rate determining, and are often written

/ 532/as a single reaction in which (O2
�)ad does not appear

/ 533/explicitly. But such a reaction is not an elementary step,

/ 534/and writing such a reaction simply means that the
/ 535/elementary steps Eqs. (1a) and (1b) proceed at the same

/ 536/rate. Likewise Eqs. (3a) and (3b) are often combined to

/ 537/yield a single 1 e� step in which Oad does not appear

/ 538/explicitly, but again this would not be an elementary

/ 539/step. With Eqs. (1a) and (1b) rate determining, steps

/ 540/(2)�/(4) are at equilibrium. Careful comparisons of

/ 541/voltammetry on Pt surfaces with and without O2 in

/ 542/solution have shown that at all potentials the coverage
/ 543/by OHad is unchanged by the presence of O2, i.e. it is

/ 544/determined entirely by the equilibrium constant of step

/ 545/(4). This implies that the equilibria for steps (Eqs. (3a),

/ 546/(3b) and (4)) are shifted strongly to the right hand side,

/ 547/and that the coverage by (HO2
�)ad in particular is low,

/ 548/as is the amount of HO2
� in solution. The mechanism is

/ 549/very useful in establishing the role of OHad in the

/ 550/structure sensitivity of the reaction on Pt(hkl ). Stronger
/ 551/adsorption of OHad causes the rate of Eqs. (1a) and (1b)

/ 552/to ‘back up’ due to the accumulation of OHad on the

/ 553/surface, blocking sites for electron transfer to O2. The

/ 554/structure sensitivity then follows the relative strengths of

/ 555/adsorption of OHad and the OHad adsorption isotherm,

/ 556/(110)�/(100)�/(111) [17,20], with the reaction rates then

/ 557/varying in reverse proportion, (111)�/(110)�/(100).

/ 558/However, examination of the kinetic parameters for
/ 559/the ORR in Table 1 reveals that this analysis might be

/ 560/an oversimplification, and does not necessarily capture

/ 561/all of the factors that contribute to the structure
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Fig. 9. (a) ORR polarization curves on pure Au(100) (solid line), Au(100)�/17% Pd (dashed�/dotted line, 1 ML Pd) and Au(100)�/35% Pd (dashed

line, 4 ML Pd) along with the ring currents for the detection of peroxide (upper panel). (b) ORR polarization curves on pure Au(111) (solid line),

Au(111)�/18% Pd (dashed�/dotted line, 1 ML Pd) and Au(111)�/42% Pd (dashed line, 2 ML Pd) along with the ring currents for the detection of

peroxide (upper panel); 0.1 M KOH, 50 mV s�1, 2500 rpm, 293 K.
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/562 /sensitivity. Although the apparent activation energies

/563 /for all low-index Pt(hkl) surfaces are very similar in the

/564 /range between 37 and 47 kJ mol�1, the Tafel slopes are

/565 /different on all three surfaces. In line with the OHad site
/566 /blocking effect discussed above, it should be noted that

/567 /above a certain OHad coverage not enough adsorption

/568 /sites are present on the surface, and, hence, a change in

/569 /the rate determining step from reaction (Eq. (1a)), the

/570 /first electron transfer, to the O2 adsorption process,

/571 /reaction (1), can be expected. That this is indeed the case

/572 /shows the least active Pt(110) electrode, were the ORR

/573 /proceeds on a surface highly covered by oxygenated
/574 /species concomitant with the very high Tafel slopes

/575 /above 130 mV per decomposition observed on this

/576 /surface, see Table 1, which directly points to a chemical

/577 /rate determining step, e.g. reaction (1). However, a full

/578 /explanation of the structure sensitivity of the ORR on

/579 /Pt(hkl ) in alkaline electrolyte will await a more quanti-

/580 /tative kinetic model than we can offer at this time.

/581 / On other surfaces, such as the Au(111) and (110)
/582 /surfaces studied here, HO2

� appears in solution at the

/583 /same potential where O2 is reduced, and there is no

/584 /measurable amount of O2 reduced without the produc-

/585 /tion of HO2
� in solution (Fig. 6). However, the

/586 /reduction is not exclusively to peroxide, as the ring-

/587 /disk measurement indicates n �/2, typically 39/0.5.

/588 /Relative to the Pt surfaces, if we assume the same

/589 /mechanism and rate determining step, the difference in
/590 /activity could qualitatively be attributed to the much

/591 /weaker interaction of OHad and Oad on the Au surface,

/592 /causing an accumulation of HO2
� both on the surface

/593 /and in solution. The base voltammetry shown in Fig. 4

/594 /clearly shows that indeed there is a much weaker

/595 /adsorption energy for OHad and Oad on the Au(hkl )

/596 /surfaces than for the Pt(hkl) surfaces, with the onset of

/597 /OH formation shifted by more than �/0.4 V for each
/598 /crystal face. Au(100) is the exception in terms of ORR

/599 /activity, having ‘Pt-like’ activity in the potential region

/600 /above 0.8 V, without the production of any peroxide in

/601 /solution, i.e. 4-e� reduction. Taylor et al. [10] pointed

/602 /out that the Pt-like behavior is dependent on the

/603 /electrode pre-history, and is observed only on the

/604 /negative going sweep from potentials above approxi-

/605 /mately 1.1 V. They postulated two possible explana-
/606 /tions: (a) the (100) surface is un-reconstructed above 1.1

/607 /V and becomes reconstructed upon reducing the poten-

/608 /tial below approximately 0.6 V, this transition causing

/609 /the catalytic peak in the polarization curve around 0.7

/610 /V; (b) surface oxide produced at potentials above 1.1 V

/611 /are actually catalytic for the ORR and their reduction

/612 /from the surface below approximately 0.6 V causes the

/613 /catalytic peak. In a later study from this laboratory [27],
/614 /we found from in situ surface X-ray scattering (SXS)

/615 /that there is no structural transition on the Au(100)

/616 /surface on the negative going sweep from 1.1 V in the

/617 /potential region around 0.6�/0.8 V, i.e. the surface

/ 618/remains in the un-reconstructed (1�/1) geometry. A

/ 619/catalytic effect of the (relatively) irreversible oxide

/ 620/formed above 1.1 V is against chemical intuition, and

/ 621/furthermore at 333 K there is essentially no ‘oxide’ left
/ 622/on the surface at 0.8�/0.9 V (Fig. 4b) but the region of 4-

/ 623/e� reduction is extended to even lower potentials. So an

/ 624/explanation for the unique behavior of the Au(100) for

/ 625/the ORR in alkaline solution remains elusive.

/ 626/ Finally, at the end of this section we want to discuss

/ 627/briefly the Tafel slopes on Pt(hkl ) and Au(hkl ) as

/ 628/summarized in Table 1. Most notably, independent of

/ 629/the exact value of the Tafel slopes, one trend can clearly
/ 630/be observed: on both Pt(hkl) and Au(hkl ) the Tafel

/ 631/slopes are always decreasing with increasing tempera-

/ 632/ture. This result is in the contrast to Pt(hkl ) in acid

/ 633/electrolyte, where the Tafel slopes increase with the

/ 634/temperature, viz., from 116 mV per decomposition at

/ 635/293 K to 132 mV per decomposition at 333 K as

/ 636/expected [4,5]. One explanation for decreasing Tafel

/ 637/slopes with increasing temperature is a temperature
/ 638/dependence of the apparent transfer coefficient, a , as

/ 639/discussed and summarized by Adzic [3]. It is also

/ 640/possible to derive anomalous temperature dependence

/ 641/in the Tafel slope even when a is not temperature

/ 642/dependent. Assuming step Eq. (1a) as the rate-determin-

/ 643/ing step one may write the rate expression according to

/ 644/[2,19,35]

645i�nFKcO2(1

�UOH)exp

�
�aFE

RT

�
exp

�
�grOHUOH

RT

�
(5)

with UOH being the potential dependent coverage of

/ 646/OHad, a and g the temperature independent transfer

/ 647/coefficients (�/0.5 in this case), n the number of

/ 648/exchanged electrons (n�/1 in this case), F the Faraday

/ 649/constant, cO2 the oxygen concentration, K a constant
/ 650/including all chemical parameters, and rOH/RT the so

/ 651/called Frumkin parameter describing either repulsive or

/ 652/attractive interactions between adsorbates. The first

/ 653/exponential term denotes exactly a Butler�/Volmer

/ 654/term. If one includes only the coverage dependence of

/ 655/the pre-exponential term (i.e. rOH�/0), OH adsorption is

/ 656/assumed to follow a Langmuir isotherm; if rOH"/0, the

/ 657/adsorption proceeds according to a Frumkin isotherm
/ 658/with lateral interactions of the adsorbates. The Tafel

/ 659/slopes at constant temperature, say 293 K, expected

/ 660/from this model should deviate from the 116 mV per

/ 661/decomposition towards smaller values depending of rOH

/ 662/(under both Langmuirian and Frumkin conditions).

/ 663/That means, in order to model decreasing Tafel slopes

/ 664/with increasing temperatures, the (1�/UOH) term and/or

/ 665/the Frumkin-term must overcompensate the Butler�/

/ 666/Volmer term. Consequently, in order to fit the experi-

/ 667/mental Tafel slopes using the experimental OHad

/ 668/adsorption isotherms (in the absence of O2 [17]),
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/669 /mathematically one has to include rOH values that

/670 /increase with the temperature. We recall that higher

/671 /rOH values describe stronger repulsive interactions of the

/672 /adsorbates (�/lower free energy of adsorption at given
/673 /coverage), and increasingly stronger interactions with

/674 /increasing temperature is consistent with chemical

/675 /intuition. Nonetheless, the effect of decreasing Tafel

/676 /slopes with increasing temperature still need further

/677 /theoretical modeling in order to reach unambiguous

/678 /conclusions.

/679 /4.2. ORR on Pt(hkl)�/Pd and Au(hkl)�/Pd

/680 / The modification of Pt(111) with one ML of Pd and

/681 /the formation of Au(hkl )�/Pd surface alloys leads to

/682 /significant enhancements of the ORR kinetics. On

/683 /Pt(111), the enhancement is relatively small, e.g. factors

/684 /of 2�/4, but on Au(111) the enhancement is more than

/685 /an order of magnitude. On Au(111), the half-wave

/686 /potential is shifted approximately 90 mV more positive
/687 /with respect to unmodified Au(111) with only 18% at.%

/688 /Pd on the surface. Additionally, the reaction on the

/689 /modified Au(111) surface proceeds nearly entirely in a 4-

/690 /e� process, whereas on pure Au(111) the reaction

/691 /proceeds exclusively via solution phase peroxide. The

/692 /enhancement by Pd appears to saturate at less than 1

/693 /ML coverage, implying that there is a synergistic effect

/694 /of Pd, i.e. the activity per surface Pd atom goes through
/695 /a maximum at a surface concentration between 20 and

/696 /50 at.%. It appears from cyclic voltammetric measure-

/697 /ments that Pt(111)�/1 ML Pd is a slightly more

/698 /‘oxophilic’ surface than pure Pt(111). Also the base

/699 /CV’s of Au(hkl )�/Pd show that these surfaces are more

/700 /‘oxophilic’ than pure Au(hkl ) surfaces. That is, for both

/701 /Pt�/Pd [36] and Au�/Pd [37], respectively, the adsorption

/702 /of OHad starts at much more negative potentials than
/703 /observed on the unmodified surfaces, identical to the

/704 /behavior of the Pt�/Pd system in perchloric acid solution

/705 /[38]. Recent theoretical calculations by Liu and Norskov

/706 /[39] also showed that the interaction of oxygen with Pd�/

/707 /Au surface alloys is increasing with increasing Pd

/708 /surface concentration. In line with the previous observa-

/709 /tion of the catalytic activity of OHad for the ORR on

/710 /Au(100) [7], it appears that on the Pd-modified relative
/711 /to the unmodified surfaces the electronic surface proper-

/712 /ties are changed in a way that a catalytic OHad state can

/713 /be formed in conjunction with the Pd adatom. We want

/714 /to emphasize, however, that we are still in progress of

/715 /collecting and evaluating our data on the Pd-modified

/716 /surfaces, and more work is needed for a better under-

/717 /standing of these significant catalytic effects. The

/718 /catalytic improvements found on the Pd-modified
/719 /Pt(hkl ) and Au(hkl ) surfaces, however, are important

/720 /new observations which may help in the pursuit of new

/721 /ORR catalysts.

/ 722/5. Conclusion

/ 723/ The kinetics of oxygen reduction in alkaline electro-

/ 724/lyte was studied on bare and Pd modified Pt(hkl ) and
/ 725/Au(hkl ) surfaces using the rotating ring�/disk electrode

/ 726/technique with solution phase peroxide detected at the

/ 727/ring electrode. Pd modification was either by electro-

/ 728/deposition (Pt) or by vapor deposition in vacuum (Au).

/ 729/The surface concentration of Pd was determined in

/ 730/vacuum using low energy ion scattering. On the bare

/ 731/Au(hkl ) surfaces the ORR was found to be strongly

/ 732/structure sensitive in the temperature range from 293 to
/ 733/333 K, with order of activity being (100)�/(110)�/(111).

/ 734/The structure sensitivity for Pt(hkl ) is much less and

/ 735/varies in the nearly the opposite order (111)�/(100)�/

/ 736/(110) over the same temperature range. The peroxide

/ 737/intermediate pathway is clearly operative on Au(hkl )

/ 738/surfaces. At elevated temperature, significantly smaller

/ 739/amounts of peroxide are formed on both Au(hkl ) and

/ 740/Pt(hkl ), respectively.
/ 741/ The kinetics of the ORR were significantly enhanced

/ 742/by modification of both Pt(hkl ) and Au(hkl ) surfaces

/ 743/with Pd. The catalytic effect is most pronounced on the

/ 744/surfaces that are less active surfaces in the unmodified

/ 745/state, with enhancement at least an order of magnitude

/ 746/faster kinetics. Pd modification of the Au(hkl ) surfaces,

/ 747/therefore, significantly reduces the structure sensitivity

/ 748/of the ORR. Even on the highly active Pt(111) surface
/ 749/the kinetics can be improved by a factor of approxi-

/ 750/mately 2�/4 due to Pd modification. The catalytic

/ 751/enhancement can be achieved with as little as 18 at.%

/ 752/Pd in the Au(hkl ) surface.
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